Concepts

Geostatistical model

- The experimental variogram is used to analyze the spatial structure of the data from a regionalized variable $z(\mathbf{x})$.
- It is fitted with a nested variogram model, thus providing the structure function of a random function.
- The regionalized variable (reality) is viewed as one realization of the random function $Z(\mathbf{x})$, which is a collection of random variables.

Kriging: a linear regression method for estimating point values (or spatial averages) at any location of a region.

Conditional simulation: simulation of an ensemble of realizations of a random function, conditional upon data — for non-linear estimation.
Concepts

Geostatistical model

- The experimental variogram is used to analyze the spatial structure of the data from a regionalized variable \(z(x) \).
- It is fitted with a nested variogram model, thus providing the structure function of a random function.
- The regionalized variable (reality) is viewed as one realization of the random function \(Z(x) \), which is a collection of random variables.

Kriging: a *linear* regression method for estimating point values (or spatial averages) at any location of a region.

Conditional simulation: simulation of an ensemble of realizations of a random function, conditional upon data — for *non-linear* estimation.
Geostatistical model

- The experimental variogram is used to analyze the spatial structure of the data from a regionalized variable $z(x)$.
- It is fitted with a nested variogram model, thus providing the structure function of a random function.
- The regionalized variable (reality) is viewed as one realization of the random function $Z(x)$, which is a collection of random variables.

Kriging: a *linear* regression method for estimating point values (or spatial averages) at any location of a region.

Conditional simulation: simulation of an ensemble of realizations of a random function, conditional upon data — for *non-linear* estimation.
Stationarity

For the top series:
- stationary mean m and covariance function $C(h)$

For the bottom series:
- mean and variance are not stationary,
- actually the realization of a non-stationary process without drift.

Both types of series can be characterized with a variogram.
Kriging of the mean of a random function
Spatially Correlated Data

Sample locations x_α in a spatial domain:

With spatial correlation we need to consider that:
- each sample point plays a different role in estimating the mean of the spatial domain,
- distances to neighboring points play a role.

How should samples thus be weighted in an optimal way?
Using the arithmetic mean:

\[M^* = \frac{1}{n} \sum_{\alpha=1}^{n} Z(x_\alpha) \]

all samples get the same weight: \(\frac{1}{n} \)

We rather need an estimator:

\[M^* = \sum_{\alpha=1}^{n} w_\alpha Z(x_\alpha) \]

with weights \(w_\alpha \) reflecting the spatial correlation.
We assume *translation-invariance* of the mean:

\[\forall x \in D : \quad \mathbb{E}[Z(x)] = m \]

and of the covariance:

\[\forall \mathbf{x}_\alpha, \mathbf{x}_\beta \in D \text{ with } \mathbf{x}_\alpha - \mathbf{x}_\beta = \mathbf{h} : \quad \text{cov}(Z(\mathbf{x}_\alpha), Z(\mathbf{x}_\beta)) = C(\mathbf{x}_\alpha - \mathbf{x}_\beta) = C(\mathbf{h}) \]
Unbiased estimator

The estimation error in our statistical model:

\[
\underbrace{M^*}_{\text{estimated value}} - \underbrace{m}_{\text{true value}}
\]

should be zero on average:

\[
E\left[M^* - m \right] = 0
\]

No bias: the estimator \(M^* \) does not on average yield a value that is different from \(m \).
No bias

Bias is avoided using weights of unit sum:

\[
\sum_{\alpha=1}^{n} w_\alpha = 1
\]

Consider:

\[
\mathbb{E}\left[M^* - m\right] = \mathbb{E}\left[\sum_{\alpha=1}^{n} w_\alpha Z(x_\alpha) - m\right]
\]

\[
= \sum_{\alpha=1}^{n} w_\alpha \mathbb{E}\left[Z(x_\alpha)\right] - m - m
\]

\[
= m \sum_{\alpha=1}^{n} w_\alpha - m = 0
\]
The variance of the estimation error is:

\[
\sigma^2_E = \text{var}(M^* - m) = \mathbb{E}\left[(M^* - m)^2\right] - \mathbb{E}\left[M^* - m\right]^2
\]

\[
= \mathbb{E}\left[M^{*2} - 2mM^* + m^2\right]
\]

\[
= \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} w_{\alpha} w_{\beta} \mathbb{E}\left[Z(x_{\alpha}) Z(x_{\beta})\right] - 2m \sum_{\alpha=1}^{n} w_{\alpha} \mathbb{E}\left[Z(x_{\alpha})\right] + m^2
\]

\[
\Rightarrow \sigma^2_E = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} w_{\alpha} w_{\beta} C(x_{\alpha} - x_{\beta})
\]
Minimal estimation variance

Aim: weights w_α that produce a minimal estimation variance:

\[
\text{minimize } \sigma_E^2 \quad \text{subject to } \sum_{\alpha=1}^{n} w_\alpha = 1
\]

The objective function φ has $n+1$ parameters:

\[
\varphi(w_1, \ldots, w_n, \mu) = \text{var}(M^* - m) - 2\mu \left(\sum_{\alpha=1}^{n} w_\alpha - 1 \right)
\]

where μ is a Lagrange multiplier.

Setting partial derivatives to zero, we obtain $n+1$ equations:

\[
\forall \alpha : \frac{\partial \varphi(w_1, \ldots, w_n, \mu)}{\partial w_\alpha} = 0, \quad \frac{\partial \varphi(w_1, \ldots, w_n, \mu)}{\partial \mu} = 0
\]
Kriging equations

The method of Lagrange yields the equation system for the optimal weights w_{KM}^{α} of the estimation of the mean:

$$\begin{align*}
\sum_{\beta=1}^{n} w_{\beta}^{KM} C(x_{\alpha} - x_{\beta}) - \mu_{KM} &= 0 \quad \text{for } \alpha = 1, \ldots, n \\
\sum_{\beta=1}^{n} w_{\beta}^{KM} &= 1
\end{align*}$$

The variance at the minimum:

$$\sigma_{KM}^2 = \mu_{KM}$$

is equal to the Lagrange multiplier.
Special case: no spatial correlation

When the covariance model is only *nugget-effect*:

\[C(x_\alpha - x_\beta) = \begin{cases} \sigma^2 & \text{if } x_\alpha = x_\beta \\ 0 & \text{if } x_\alpha \neq x_\beta \end{cases} \]

the kriging of the mean system simplifies to:

\[
\begin{align*}
\sum_{\beta=1}^{n} w_{\alpha}^{KM} \sigma^2 &= \mu_{KM} \quad \text{for } \alpha = 1, \ldots, n \\
\sum_{\beta=1}^{n} w_{\beta}^{KM} &= 1
\end{align*}
\]

The solution weights are all equal:

\[w_{\alpha}^{KM} = \frac{1}{n} \]

\[M^* = \frac{1}{n} \sum_{\alpha=1}^{n} Z(x_\alpha) \quad \text{with variance} \quad \mu_{KM} = \sigma_{KM}^2 = \frac{1}{n} \sigma^2 \]
Special case: no spatial correlation

When the covariance model is only *nugget-effect*:

\[C(\mathbf{x}_\alpha - \mathbf{x}_\beta) = \begin{cases} \sigma^2 & \text{if } \mathbf{x}_\alpha = \mathbf{x}_\beta \\ 0 & \text{if } \mathbf{x}_\alpha \neq \mathbf{x}_\beta \end{cases} \]

the kriging of the mean system simplifies to:

\[
\begin{cases}
 w_{\alpha}^{\text{KM}} \sigma^2 = \mu_{\text{KM}} \\
 \sum_{\beta=1}^{n} w_{\beta}^{\text{KM}} = 1
\end{cases}
\]

for \(\alpha = 1, \ldots, n \)

The solution weights are all equal:

\[w_{\alpha}^{\text{KM}} = \frac{1}{n} \]

\[
M^* = \frac{1}{n} \sum_{\alpha=1}^{n} Z(\mathbf{x}_\alpha) \quad \text{with variance} \quad \mu_{\text{KM}} = \frac{\sigma_{\text{KM}}^2}{\frac{1}{n} \sigma^2}
\]
Estimation at an unsampled location

Sample locations \mathbf{x}_α (blue dots) in a spatial domain \mathcal{D}:

Aim: estimate Z^\star at an unsampled location \mathbf{x}_0.
Ordinary kriging

The estimate Z^* is a weighted average of data values $Z(x_\alpha)$:

$$Z^*(x_0) = \sum_{\alpha=1}^{n} w_\alpha Z(x_\alpha) \quad \text{with} \quad \sum_{\alpha=1}^{n} w_\alpha = 1$$

The weights w^{OK}_α of the Best Linear Unbiased Estimator (BLUE) are solution of the system:

$$\begin{cases}
\sum_{\beta=1}^{n} w^{OK}_\beta \gamma(x_\alpha-x_\beta) + \mu_{OK} = \gamma(x_\alpha-x_0) & \text{for} \quad \alpha = 1, \ldots, n \\
\sum_{\beta=1}^{n} w^{OK}_\beta = 1
\end{cases}$$

Minimal variance: $\sigma_{OK}^2 = \mu_{OK} + \sum_{\alpha=1}^{n} w^{OK}_\alpha \gamma(x_\alpha-x_0)$
Ordinary kriging

The estimate \(Z^* \) is a weighted average of data values \(Z(x_\alpha) \):

\[
Z^*(x_0) = \sum_{\alpha=1}^{n} w_\alpha Z(x_\alpha) \quad \text{with} \quad \sum_{\alpha=1}^{n} w_\alpha = 1
\]

The weights \(w^{\text{OK}}_\alpha \) of the Best Linear Unbiased Estimator (BLUE) are solution of the system:

\[
\begin{align*}
\sum_{\beta=1}^{n} w^{\text{OK}}_\beta \gamma(x_\alpha - x_\beta) + \mu_{\text{OK}} &= \gamma(x_\alpha - x_0) \quad \text{for} \quad \alpha = 1, \ldots, n \\
\sum_{\beta=1}^{n} w^{\text{OK}}_\beta &= 1
\end{align*}
\]

Minimal variance:

\[
\sigma^2_{\text{OK}} = \mu_{\text{OK}} + \sum_{\alpha=1}^{n} w^{\text{OK}}_\alpha \gamma(x_\alpha - x_0)
\]
The behavior of kriging weights
Geometric anisotropy
Spherical variogram, weights sum up to 100%

Isotropic model:

- 25% at each of the four corners
- L represents the horizontal distance

Anisotropic (ranges — horizontal 1.5L, vertical 0.75L):
- 25% at each of the four corners
- L represents the horizontal distance

Geometric anisotropy
Spherical variogram, weights sum up to 100%

Isotropic model:

Anisotropic (ranges — horizontal 1.5L, vertical .75L):
The screen effect
Spherical variogram with range 2L

Left sample is at 1L and right at 2L from target

\[\sigma_{OK}^2 = 1.14 \]

65.6%
A

34.4%
B

Introducing an extra sample

\[\sigma_{OK}^2 = 0.87 \]

49.1%
C

Adding the sample C screens off the sample B.
The screen effect
Spherical variogram with range 2L

Left sample is at 1L and right at 2L from target

\[\sigma_{OK}^2 = 1.14 \]

Introducing an extra sample

\[\sigma_{OK}^2 = 0.87 \]

Adding the sample C screens off the sample B.
Filtering noisy images by cokriging
Trace elements are usually masked by instrumental noise.

Data: 512×512 image of phosphorus (P) trace elements.

Images for chrome (Cr) and (Ni) are less noisy.

Geostatistical filtering is used to remove the noise.
Structural analysis

Image of phosphorus

Nested variogram

\[\gamma(h) = 384 \text{nug}(h) + 75 \exp(h) + 13 |h| \]
Filtering the nugget-effect

Raw image of phosphorus

Filtered image
Multivariate data

P

Cr

Ni
Multivariate structural analysis
Direct and cross variograms

Matrix variogram model: \[G(h) = B_0 \text{nug}(h) + B_1 \exp(h) + B_1 |h| \]
Filtering the nugget-effect
Phosphorus

Filtered by kriging

Filtered by cokriging
Space-time filtering
Séguret & Huchon, JGR 1990
Earth magnetism

- Magnetic anomalies are essential to study earth history.
- Magnetism is influenced by several external factors like:
 - solar wind explaining daily fluctuations (period: 24 hours)
 - rotation of the moon around the earth (period: 28 days)
 - solar perturbations (half-year cycle)

Available data:

SEAPERC campaign (Ifremer, 1986) Data from a research vessel about magnetism over a fractured area of 111 km² off Peru.

Fluctuations of earth magnetism Measurements at a Peruvian observatory for the time period of the campaign.
Daily fluctuation of earth magnetism
Huancayo observatory (Peru): 22 to 28/08/1986

Time series (6 days)

Variogram
SEAPERC campaign
Ship moves along a profile in 12 hours

Map

Study area
Measurements at observatory and along ship route

Perturbations diurnes $D(t)$ (observatoire fixe de HUANCAYO)

$\text{Magnetisme } Z(t) \text{ perturbe par } D(t)$

 absence de donnees du fait d'une panne du magnetometre
Filtering the daily fluctuations of magnetism

Space-time model: $Z(x, t) = Y(x) + m(t)$

With time perturbations

After geostatistical filtering
We have seen:

- how to set up a variogram model and a corresponding random function model with several components,
- that these components can be extracted by kriging,
- that this applies to multivariate or space-time filtering problems.

These methods are based on estimators that are **linear** combinations (weighted averages) of data.

However we often are asked to estimate statistics that are **not linearly** related to data. We will see next how to provide answers by geostatistical simulation.
JP Chilès and P Delfiner.
Geostatistics: Modeling Spatial Uncertainty.

G Matheron.
The Theory of Regionalized Variables and its Applications.

S Séguret and P Huchon.
Trigonometric kriging: a new method for removing the diurnal variation from geomagnetic data.

H Wackernagel.
Multivariate Geostatistics: an Introduction with Applications.