A comprehensive Nansen Center contribution to the latest IPCC report

Works from 19 of our current researchers are used in the most recent IPCC report released on the 9th of August this year.


The Sixth Assessment Report by the Intergovernmental Panel on Climate Change has made headlines all around the globe: and been heavily cited by media, politicians, business leaders, and others. The spotlight it has received is sorely needed – It is undeniable that the world is experiencing climate change at an unprecedented rate, and we need to know how our actions today are shaping our future.

This report lines out what we know today about our climate, the different processes affecting it, and how emissions of greenhouse gasses and particles are forcing the climate to change. This recent news story focuses on the importance of the report and its content. The report’s summary for policymakers combines the most advanced knowledge into one short and easily comprehensible document, while it is based on an almost 4000-page long scientific report. This report builds on thousands of scientific publications, scrutinously reviewed by the authors of the report, and thousands of people have commented on various versions of the report before final publication.  

19 current researchers from the Nansen Center have directly and indirectly contributed to this achievement: Creating a clear and coherent summary of our current climate’s status!

Sebastian Mernild (former director Nansen Center) is a lead author for the new IPCC atlas, as well as contributing author for chapter 9: Ocean, cryosphere and sea level change, and Noel Keenlyside (professor University of Bergen and part time position Nansen Center) is a contributing author for chapter 2: Changing state of the climate system.

In addition to the two, 17 other Nansen Center researchers were cited throughout the report. Almost all chapters contain results by our scientists – a testament to our cutting-edge research. Examples of this research are climate modelling (reanalyses, predictions and scenarios), connections between climate in different regions (teleconnections), Arctic sea-ice modelling, and investigations of the Atlantic multidecadal variability, Arctic surface climate, sea surface temperatures, precipitation trends, glacial coverage, as well as of winds and their energy potential. 


You find an overview of the cited publications below. 

In addition to the ones listed, there are many works produced by former employees while working at the Nansen Center that are not listed.


First author publications

 1.  Counillon, F., N. Keenlyside, I. Bethke, Y. Wang, S. Billeau, M. L. Shen, and M. Berntsen, 2016: Flow-dependent assimilation of sea surface temperature in isopycnal coordinates with the Norwegian Climate Prediction Model. Tellus A: Dynamic Meteorology and Oceanography, 68(1), 32437, doi:10.3402/tellusa.v68.32437.

2.  Counillon, F. , I. Bethke, N. Keenlyside, M. Berntsen, L. Bertino, and F. Zheng, 2014: Seasonal-to-decadal predictions with the ensemble Kalman filter and the Norwegian Earth System Model: a twin experiment. Tellus A: Dynamic Meteorology and Oceanography, 66(1), 21074, doi:10.3402/tellusa.v66.21074.

3.  Davy, R. and S. Outten, 2020: The Arctic Surface Climate in CMIP6: Status and Developments since CMIP5. Journal of Climate, 33(18), 8047–8068, doi:10.1175/jcli-d-19-0990.1

4.  Davy, R., L. Chen, and E. Hanna, 2018: Arctic amplification metrics. International Journal of Climatology, 38(12), 4384–4394, doi:10.1002/joc.5675.

5.  Davy, R., N. Gnatiuk, L. Pettersson, and L. Bobylev, 2018: Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea. Renewable and Sustainable Energy Reviews, 81, 1652–1659, doi:10.1016/j.rser.2017.05.253.

6.  Davy, R., I. Esau, A. Chernokulsky, S. Outten, and S. Zilitinkevich, 2017: Diurnal asymmetry to the observed global warming. International Journal of Climatology, 37(1), 79–93, doi:10.1002/joc.4688

7.  Keenlyside, N., J. Ba, J. Mecking, N.-E. Omrani, M. Latif, R. Zhang, and R. Msadek, 2015: North Atlantic Multi-Decadal Variability – Mechanisms and Predictability. In: Climate Change: Multidecadal and Beyond [Chang, C.-P., M. Ghil, M. Latif, and J.M. Wallace (eds.)]. World Scientific, pp. 141–157, doi:10.1142/9789814579933_0007.

8.  Keenlyside, N. S., H. Ding, and M. Latif, 2013: Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophysical Research Letters, 40, 2278–2283. doi:10.1002/grl.50362.

 9.  Keenlyside, N.S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453(7191), 84–88, doi:10.1038/nature06921.

10.  Keenlyside, N. S. and M. Latif, 2007: Understanding Equatorial Atlantic Interannual Variability. Journal of Climate, 20, 131–142, doi:10.1175/JCLI3992.1.

11.  Langehaug, H. R., D. Matei, T. Eldevik, K. Lohmann, and Y. Gao, 2017: On model differences and skill in predicting sea surface temperature in the Nordic and Barents Seas. Climate Dynamics, 48(3–4), 913–933, doi:10.1007/s00382-016-3118-3

12.  Mernild, S. H., G.E. Liston, C.A. Hiemstra, J.C. Yde, and G. Casassa, 2018: Annual River Runoff Variations and Trends for the Andes Cordillera. Journal of Hydrometeorology, 19(7), 1167–1189, doi:10.1175/jhm-d-17- 0094.1.

13.  Mernild, S. H., G. E. Liston, C. A. Hiemstra, J. K. Malmros, J. C. Yde, and J. McPhee, 2017: The Andes Cordillera. Part I: snow distribution, properties, and trends (1979-2014). International Journal of Climatology, 37(4), 1680–1698, doi:10.1002/joc.4804.

14.  Mernild, S. H., E. Hanna, J. R. McConnell, M. Sigl, A. P. Beckerman, J. C. Yde, J. Cappelen, J. K. Malmros, and K. Steffen, 2015: Greenland precipitation trends in a long-term instrumental climate context (1890-2012): evaluation of coastal and ice core records. International Journal of Climatology, 35(2), 303–320, doi:10.1002/joc.3986. 

15.  Mernild, S. H., E. Hanna, J. C. Yde, J. Cappelen, and J. K. Malmros, 2014: Coastal Greenland air temperature extremes and trends 1890-2010: annual and monthly analysis. International Journal of Climatology, 34(5), 1472–1487, doi:10.1002/joc.3777.

16.  Mernild, S. H., W.H. Lipscomb, D.B. Bahr, V. Radić, and M. Zemp, 2013: Global glacier changes: a revised assessment of committed mass losses and sampling uncertainties. The Cryosphere, 7(5), 1565–1577, doi:10.5194/tc-7-1565-2013. 

17.  Olason, E. and D. Notz, 2014: Drivers of variability in Arctic sea-ice drift speed. Journal of Geophysical Research C: Oceans, 119(9), 5755–5775, doi:10.1002/2014jc009897.

18.  Outten, S., P. Thorne, I. Bethke, and Ø. Seland, 2015: Investigating the recent apparent hiatus in surface temperature increases: 1. Construction of two 30-member Earth System Model ensembles. Journal of Geophysical Research: Atmospheres, 120(17), 8575–8596, doi:10.1002/2015jd023859.

19.  Outten, S. D. and I. Esau, 2013: Extreme winds over Europe in the ENSEMBLES regional climate models. Atmospheric Chemistry and Physics, 13(10), 5163–5172, doi:10.5194/acp-13-5163-2013.

20.  Outten, S. D. and I. Esau, 2012: A link between Arctic sea ice and recent cooling trends over Eurasia. Climatic Change, 110(3–4), 1069–1075, doi:10.1007/s10584-011-0334-z

21.  Rampal, P., J. Weiss, and D. Marsan, 2009: Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979-2007. Journal of Geophysical Research: Oceans, 114(5), doi:10.1029/2008jc005066.

22.  Suo, L., Y. Gao, D. Guo, and I. Bethke, 2017: Sea-ice free Arctic contributes to the projected warming minimum in the North Atlantic. Environmental Research Letters, 12(7), 74004, doi:10.1088/1748-9326/aa6a5e.


Co-authored publications

 1.  Bethke, I., Y. Wang, F. Counillon, M. Kimmritz, F. Fransner, A. Samuelsen, H. R. Langehaug, P.-G. Chiu, M. Bentsen, C. Guo, J. Tjiputra, A. Kirkevåg, D. J. L.  Oliviè, Ø. Seland, Y. Fan, P. Lawrence, T. Eldevik, and N. Keenlyside, 2019: NCC NorCPM1 model output prepared for CMIP6 CMIP piControl, doi:10.22033/ESGF/CMIP6.10896.

2.  Bethke, I., S. Outten, O. H. Otterå, E. Hawkins, S. Wagner, M. Sigl, M., and P. Thorne, 2017: Potential volcanic impacts on future climate variability. Nature Climate Change, 7, 799–805, doi:10.1038/nclimate3394.

3.  Chen, F. and Y. Gao, 2018: Evaluation of precipitation trends from high-resolution satellite precipitation products over Mainland China. Climate Dynamics, 51, 3311–3331, doi:10.1007/s00382-018-4080-z.

4.  Cui, X., Y. Gao, and J. Sun, 2014: The response of the East Asian summer monsoon to strong tropical volcanic eruptions. Advances in Atmospheric Sciences, 31, 1245–1255, doi:10.1007/s00376-014-3239-8.

5.  Ding, H., N. S. Keenlyside, and M. Latif, 2012: Impact of the Equatorial Atlantic on the El Niño Southern Oscillation. Climate Dynamics, 38, 1965–1972, doi:10.1007/s00382-011-1097-y.

6.  Forzieri, G., L. Feyen, S. Russo, M. Vousdoukas, L. Alfieri, L., S. Outten, M. Migliavacca, A. Bianchi, R. Rojas, and A. Cid, 2016: Multi-hazard assessment in Europe under climate change. Climatic Change, 137, 105–119, doi:10.1007/s10584-016-1661-x.

7.  Gulev, S. K., M. Latif, N. Keenlyside, W. Park, and K.P. Koltermann, 2013: North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature, 499, 464, doi:10.1038/nature12268.

8.  Guo, D., Y. Gao, I. Bethke, D. Gong, O. M. Johannessen, and H. Wang, 2014: Mechanism on how the spring Arctic sea ice impacts the East Asian summer monsoon. Theoretical and Applied Climatology, 115, 107–119, doi:10.1007/s00704-013- 0872-6.

9.  He, S., Y. Gao, F. Li, H. Wang, and Y. He, 2017: Impact of Arctic Oscillation on the East Asian climate: A review. Earth-Science Reviews, 164, 48–62, doi:10.1016/j.earscirev.2016.10.014

10.  Lavergne, T., A. Macdonald Sørensen, S. Kern, R. Tonboe, D. Notz, S. Aaboe, L. Bell, G. Dybkjær, S. Eastwood, C. Gabarro, G. Heygster, M. Anne Killie, M. Brandt Kreiner, J. Lavelle, R. Saldo, S. Sandven,  and L. T. Pedersen, 2019: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere, 13(1), 49–78, doi:10.5194/tc-13-49-2019.

11.  Legeais, J.-F., M. Ablain, L. Zawadzki, H. Zuo, J. A. Johannessen, M. G. Scharffenberg, L. Fenoglio-Marc, M. J. Fernandes, O. Andersen, S. Rudenko, and P. Cipollini, G. D. Quartly, M. Passaro, A. Cazenave, and J. Benveniste, 2018: An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth System Science Data, 10, 281–301, doi:10.5194/essd-10-281-2018.

12.  Li, F., Y. J. Orsolini, H. Wang, Y. Gao, and S. He, 2018: Atlantic Multidecadal Oscillation Modulates the Impacts of Arctic Sea Ice Decline. Geophysical Research Letters, 45(5), 2497–2506, doi:10.1002/2017gl076210.

13.  Mohino, E., N. Keenlyside, and H. Pohlmann, 2016: Decadal prediction of Sahel rainfall: where does the skill (or lack thereof) come from? Climate Dynamics, 47(11), 3593–3612, doi:10.1007/s00382-016-3416-9.

14.  Nnamchi, H. C., M. Latif, N. S. Keenlyside, J. Kjellsson, and I. Richter, 2021: Diabatic heating governs the seasonality of the Atlantic Niño. Nature Communications, 12, 376, doi:10.1038/s41467-020-20452-1.

15.  Nnamchi, H. C., F. Kucharski, N. S. Keenlyside, and R. Farneti, 2017: Analogous seasonal evolution of the South Atlantic SST dipole indices. Atmospheric Science Letters, 18(10), 396–402, doi:10.1002/asl.781.

16.  Nnamchi, H. C., J. Li, F. Kucharski, I.-S.  Kang, N. S. Keenlyside, P. Chang, and R. Farneti, 2015: Thermodynamic controls of the Atlantic Niño. Nature Communications, 6, 8895, doi:10.1038/ncomms9895.

17.  Ogawa, F., N.-E. Omrani, K. Nishii, H. Nakamura, and N. Keenlyside, 2015: Ozone-induced climate change propped up by the Southern Hemisphere oceanic front. Geophysical Research Letters, 42(22), 10056–10063, doi:10.1002/2015gl066538.

18.  Otterå, O. H., M. Bentsen, H. Drange, and L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nature Geoscience, 3, 688–694, doi:10.1038/ngeo955.

19.  Reintges, A., T. Martin, M. Latif, and N. S. Keenlyside, 2017: Uncertainty in twenty-first century projections of the Atlantic Meridional Overturning Circulation in CMIP3 and CMIP5 models. Climate Dynamics, 49(5), 1495–1511, doi:10.1007/s00382-016-3180-x.

20.  Sillmann, J., T. Thorarinsdottir, N. Keenlyside, N. Schaller, L. V. Alexander, G. Hegerl, S. I. Seneviratne, R. Vautard, X. Zhang, and F. W. Zwiers, 2017: Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather and Climate Extremes, 18, 65–74, doi:10.1016/j.wace.2017.10.003.

21.  Svendsen, L., N. G. Kvamstø, and N. Keenlyside, 2014a: Weakening AMOC connects Equatorial Atlantic and Pacific interannual variability. Climate Dynamics, 43(11), 2931–2941, doi:10.1007/s00382-013-1904-8

22.  Svendsen, L., S. Hetzinger, N. Keenlyside, and Y. Gao, 2014b: Marine-based multiproxy reconstruction of Atlantic multidecadal variability. Geophysical Research Letters, 41(4), 1295–1300, doi:10.1002/2013gl059076.

23.  Thorne, P., S. Outten, I. Bethke, and Ø. Seland, 2015: Investigating the recent apparent hiatus in surface temperature increases: 2. Comparison of model ensembles to observational estimates. Journal of Geophysical Research: Atmospheres, 120(17), 8597–8620, doi:10.1002/2014jd022805.

24.  Venter, Z.S., O. Brousse, I. Esau, and F. Meier, 2020: Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data. Remote Sensing of Environment, 242, 111791, doi:10.1016/j.rse.2020.111791.

25.  Wang, T., H. J. Wang, O. H. Otterå, Y. Q. Gao, L. L. Suo, T. Furevik, and L. Yu, 2013: Anthropogenic agent implicated as a prime driver of shift in precipitation in eastern China in the late 1970s. Atmospheric Chemistry and Physics 13, 12433– 12450. doi:10.5194/acp-13-12433-2013.

Add comment

Login to post comments